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Abstract

Diffusion models, a potent generative framework, have re-
cently garnered substantial attention. While many argue that
the advantages of diffusion models stem from their compara-
tively steady training procedure when contrasted with Gen-
erative Adversarial Networks (GANs), these assertions of-
ten rely on intuition and lack concrete empirical validation.
This research paper aims to furnish direct empirical proof
elucidating the impressive steadiness demonstrated by diffu-
sion models during their training phase. Our methodology
entails an inquiry that initiates a comparative examination
of the generative results of models with differing hyperpa-
rameters, encompassing initialization and model architecture,
under identical sampling circumstances. Our discoveries il-
lustrate that diffusion models consistently produce uniform
generative outcomes across various hyperparameter configu-
rations, emphasizing their resilience in learning the associa-
tion between random variations and data. Subsequently, we
proceed to examine and compare the loss landscapes of dif-
fusion models and GANs, disclosing that diffusion models
exhibit notably smoother loss terrains, implying heightened
convergence stability. Based on these experiments, we have
conclusively validated the advantages of the diffusion model
in terms of its architectural structure. Furthermore, employ-
ing the curriculum learning-based timestep schedule, we pro-
posed a training optimization technique based on the princi-
ple of reducing difficulty from easy to hard, yielding nearly a
twofold time optimization on CIFAR-10.

Introduction
Diffusion Models (DMs)(Sohl-Dickstein et al. 2015; Ho,
Jain, and Abbeel 2020; Song, Meng, and Ermon 2020; Song
et al. 2020) , a prominent class of generative models, have
received significant attention in recent years due to their ex-
ceptional ability to model complex data distributions. DMs
have led to substantial advancements in various domains, in-
cluding image generation(Nichol and Dhariwal 2021; Dhari-
wal and Nichol 2021; Rombach et al. 2021), image ma-
nipulation(Zhang, Rao, and Agrawala 2023; Lugmayr et al.
2022; Kawar et al. 2023), video generation(Ho et al. 2022;
Blattmann et al. 2023; Wang et al. 2023), and speech synthe-
sis(Jeong et al. 2021; Zhang et al. 2023). While the superior
performance of diffusion models is often attributed to their

Copyright © 2024, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

(a) Cifar10 (b) ImageNet128 (c) ImageNet512

Figure 1: Illustration of the consistency phenomenon in
diffusion models (DMs). Despite different initializations
or structural variations, DMs trained on the same dataset
produce remarkably consistent results when exposed to
identical noise during sampling. (a) presents three models
trained on CIFAR10 with different initializations. (b) de-
picts two models (Dhariwal and Nichol 2021) trained on Im-
ageNet128 with different structures. (c) showcases the large
and huge models of UViT (Bao et al. 2023) trained on Ima-
geNet512.

stable training process, these claims are frequently based on
intuition and lack empirical evidence.

In this study, we endeavor to provide empirical evidence
substantiating the stability of the training process in DMs.
Based on our findings, changing the model structure and
initialization would not significantly influence the result as
long as training with constant noise, i.e., the same initial
noise and noise per round. We try to reveal the veil of the
stability of DMs from the perspective of the training land-
scape. Our results reveal a notable consistency in the gen-
erative outcomes, as depicted in Figure 1. It is important to
highlight that such a consistency phenomenon is not typi-
cally observed in generative models. These models gener-
ally bootstrap samples that adhere to a certain probability
distribution, i.e., a noise, onto the desired data distribution
in an ultra-high dimensional space (Song and Ermon 2019).
This process is inherently laden with a considerable degree
of randomness. Consequently, this experiment demonstrates
the stability of DMs in learning noise-data mapping relation-
ships and hyper-parameters robustness.

From the observation of DMs mentioned above, we can
reasonably speculate that The landscape of DMs resembles a
bowl, which implies that the model from different initializa-
tion and structure converges to a similar minimum. To fur-
ther investigate the loss landscape associated with DMs, we
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Figure 2: Visualization of the loss landscapes of Improved
Diffusion and DCGAN, where t is the timestep of DMs.
Both models were trained on the CIFAR10 dataset. The loss
landscape of DMs is smoother compared to GANs.

employ various techniques such as loss landscape visualiza-
tion (Li et al. 2018), 1D interpolation, and Hessian spectral
decomposition (Yao et al. 2020). Loss landscape is the high-
dimensional space formed by the partial derivatives of the
loss function concerning the model parameters. The smooth-
ness of this space affects the convergence rate of the model
(Garrigos and Gower 2023), i.e., the smoother the loss land-
scape, the easier the optimization. We compare the results
of these techniques on DMs and a conventional generative
model, e.g., GANs, in Fig 2, respectively. Our findings re-
veal that the loss landscape of the diffusion model exhibits
significantly higher smoothness compared to that of GANs,
implying that DMs are easier to optimize than GANs.

Motivated by these analyses, we have proposed an opti-
mization approach for DMs. Further investigation into the
consistency phenomenon of DMs revealed varying conver-
gence difficulties among different timesteps, each contribut-
ing differently to the final quality of generation (Choi et al.
2022). Hence, we introduced the curriculum learning-based
timestep schedule (CLTS) (Bengio et al. 2009). This ap-
proach aims to gradually reduce the sampling probability
of easily converging timesteps, thereby enhancing training
efficiency.

To validate its effectiveness, we conducted training com-
parisons on CIFAR-10. The results indicate that this ap-
proach achieves nearly twice the time optimization on
CIFAR-10. Moreover, it corroborates that the consistency
observed aligns with meaningful phenomena.

Our contributions are summarized as follows:

• We provide empirical evidence by conducting a consis-
tency experiment and comparing the loss landscapes of
diffusion models and GANs, to elucidate why diffusion
models exhibit significant stability during training.

• We propose an optimization method for diffusion mod-
els, namely the curriculum learning-based timestep
schedule (CLTS). This method optimizes the sampling
probability of timesteps to expedite model convergence.

• We evaluate the effectiveness of our optimization meth-
ods on diffusion models and datasets, showcasing their
impact on improving the convergence speed of diffusion
models.

Related Work
Diffusion Models
Diffusion Models (DMs) are a class of generative models
that use techniques from non-equilibrium thermodynamics
to learn the latent structure of complex data distributions.
They were first introduced by (Sohl-Dickstein et al. 2015),
who applied their method to image and text generation.
Later, (Ho, Jain, and Abbeel 2020) proposed Denoising Dif-
fusion Probabilistic Models (DDPM), which improved the
sampling efficiency and quality of diffusion models by using
a denoising score matching objective and a learned diffusion
process. (Rombach et al. 2021) developed Latent Diffusion
Models (LDMs), which compressed high-resolution images
into lower-dimensional representations using pre-trained au-
toencoders. They also introduced cross-attention layers into
the model architecture, which enabled LDMs to handle var-
ious conditioning inputs, such as text or bounding boxes,
and generate high-resolution images in a convolutional man-
ner. Despite the success of DMs using UNet, a convolu-
tional neural network, (Bao et al. 2023) and (Peebles and Xie
2022) discovered the feasibility of using Vision Transformer
(Dosovitskiy et al. 2020) in DMs, achieving state-of-the-art
generation results.

Several studies have focused on improving the DMs from
various aspects (Karras et al. 2022; Chen 2023). (Nichol
and Dhariwal 2021) proposed several techniques to enhance
the performance and efficiency of DMs, such as employ-
ing a learned variance schedule, adopting a cosine timestep
schedule for low-resolution data, and developing a multi-
scale architecture. (Dhariwal and Nichol 2021) further im-
proved the performance and fidelity of DMs, by incorpo-
rating advanced design concepts of BigGAN (Brock, Don-
ahue, and Simonyan 2018). Although integrating the sophis-
ticated model structure of GAN can benefit the performance
of DMs, they also adopt the same large momentum setting,
which is sub-optimal, because the loss landscape of DMs is
highly smoothed. A large momentum not only affects con-
vergence efficiency but also causes oscillations. This issue
and its implications are explored in further detail in the fol-
lowing section.

Unveriling the Stability of Diffusion Models
In this section, we present empirical evidence to substan-
tiate the stability of DMs in learning noise-to-data map-
ping and convergence, thereby underscoring their superior-
ity over GANs. We delve into an analysis of the stability of
DMs in the context of learning noise-to-data mapping. Fi-
nally, we draw a comparison between the smoothness of the
loss landscape of DMs and GANs.

Analyze the Stability of noise-to-data mapping
The stability of the generative model learning the noise-to-
data mapping is an important aspect of generative model-
ing, as it reflects how well the model can cope with different
noise and different choices of hyper-parameters. However,
this stability is often overlooked or not explicitly evaluated.

In this section, we evaluate the stability of DMs in learn-
ing the noise-to-data mapping through a consistency exper-



Table 1: Comparing consistencies of DMs and GANs in
learning noise-to-data mapping.

Datasets Different
Initializations

Different
Structures Consistency (PSNR)

Improved Diffusion Cifar10 ✓ 20.14
DCGAN Cifar10 ✓ 10.48

Guided Diffusion ImageNet128 ✓ ✓ 17.23
BigGAN ImageNet128 ✓ ✓ 8.58

U-ViT ImageNet512 ✓ ✓ 14.37
BigGAN ImageNet512 ✓ ✓ 6.40

iment. We select three diffusion frameworks as representa-
tive DMs: Improved Diffusion , Guided Diffusion, and U-
ViT, and two GAN frameworks: DCGAN (Radford, Metz,
and Chintala 2015) and BigGAN. We train DMs and GANs
with different hyper-parameters on three benchmarks: Ci-
far10 (Krizhevsky, Hinton et al. 2009), ImageNet128 (Deng
et al. 2009) and ImageNet512 (Deng et al. 2009). The re-
sults of the consistency experiment and the detailed settings
are presented in Table 1.

In the consistency experiment, we use the peak signal-
to-noise ratio (PSNR) to measure the consistency of each
model. Specifically, for a group of models, e.g., For differ-
ent initializations of Improved Diffusion or large and huge
models of U-ViT, we sample 32 images with the same sam-
pling seed to ensure identical initial and noise in each round.
Suppose we have N models of a group, each model generate
M images, we then measure the consistency C(·),

C(q) =
1

M

M∑
i=1

1

N − 1

N∑
j=2

PSNR(qi,1, qi,j), (1)

where q ∈ RN×M is the matrix of images.
The result of the consistency experiment reveals that all

DMs have much higher consistency than GANs, regardless
of the dataset, initialization, or model structure, indicating
that DMs are more robust and stable in learning noise-to-
data mapping.

Analyze the Smoothness of Landscape
The smoothness of the loss landscape is strongly correlated
with the convergence difficulty. In this section, we conduct
a thorough investigation of the loss landscape of DMs and
GANs during the training. However, due to the high dimen-
sionality of the models’ parameters, it is infeasible to access
the full information of the loss landscape. Therefore, we re-
sort to a partial analysis based on 1D interpolation of models
and hessian spectra, following the method proposed by (Li
et al. 2018).

1D interpolation is a technique that generates new data
points by leveraging existing data. In our research, we em-
ployed 1D linear interpolation to estimate the position θ
within the landscape using the provided models at different
stages of training, namely θa and θb. This involved calculat-
ing the weighted sum of these two models.

θ = αθa + (1− α)θb. (0 ≤ α ≤ 1) (2)

We use interpolation to analyze the relationship between dif-
ferent training stages and gather valuable information. Our

Figure 3: Illustration of the 1D-interpolation results of DMs
and GANs. The jitter red line indicates the geometry of
GAN’s landscape is rougher.

Figure 4: Illustration of the Hessian spectrum of DMs(left)
and GANs(right). λi is the i-th largest eigenvalue and µ
and σ is the mean and variance of eigenvalue respectively.
Larger dominant eigenvalue, sharper the landscape, and the
greater the differences among eigenvalues, the more difficult
the model is to optimize.

approach involves training a Diffusion model and a GAN
model, followed by selecting models from various training
steps as anchor points. Specifically, we select the models
trained 10 and 100 epochs for both DM and GAN. These
selections, shown in Figure 3, represent models from both
early and late convergence stages.

As shown in Figure 3, the GAN model exhibits more er-
ratic changes in loss, indicating that changes in GAN param-
eters lead to relatively larger changes.

Hessian spectra refers to the distribution of eigenvalues
in the Hessian matrix. Inspired by the connection between
the geometry of the loss landscape and the eigenvalue, we
approximate the Hessian spectrum by the Lanczos algorithm
and the results of Diffusion and GAN are shown in Fig-
ure 4. From the figure, it can be seen that the dominant
eigenvalue of GAN’s is larger, i.e., λ1 = 13.3(DMs) v.s.
λ1 = 40.9(GANs), and dispersion, i.e., σ2 = 37.9(DMs)
v.s. σ2 = 93.9(GANs), which implies that the landscape of
GAN is steeper and more rugged, which also means that the
GAN is more difficult to optimize.

Optimization
In this section, we delve into the underlying reasons for
the unique consistency phenomenon observed exclusively



4.00

8.00

12.00

16.00

20.00

1 5 10 15 20 25 30 35 40

Baseline Ours

2.2

2.9

3.6

4.3

5

5 10 15 20 25 30 35 40 45 50

Ours Baseline

(10k)

x2

(a) Cifar10

(100k)

x2.6

(b) ImageNet128

FI
D

FI
D

Training Iteration Training Iteration

Figure 5: Illustration of the application of our optimization
approach on different DMs. (a) Improved Diffusion trained
on Cifar10, (b) Guided Diffusion trained on ImageNet128.
With our methods, these DMs achieve 2× and 2.6× speedup
in training, respectively.

in DMs. We demonstrate that ϵ-predicted DMs tend to be-
come trivial as timesteps approach T , resulting in high struc-
tural similarity but low diversity in image details. Subse-
quently, we explore leveraging this characteristic to opti-
mize DMs, drawing inspiration from curriculum learning.
We introduce a timestep schedule that gradually reduces the
sampling probabilities of timesteps t → T as training pro-
gresses.

Investigating the Consistency Phenomenon
We initiate our exploration by formulating the forward dif-
fusion process as follows:

xt =
√
ᾱt · x0 +

√
1− ᾱt · ϵ, ϵ ∼ N (0, I), (3)

where αt = 1 − βt and ᾱt = Πt
s=0αs. Note that ᾱt is a

factor ranging from 0 to 1. As t → T , ᾱt → 0, leading to
xt → ϵ.

The simplicity loss, denoted as Lsimple, is defined as:

Lsimple = Ex0∼q(x0),ϵ∼N (0,I)
[
||ϵ− ϵθ(xt, t)||2

]
, (4)

which, as xt → ϵ, results in ϵθ → I. This indicates that
ϵ-predicted DMs tend to become trivial as t → T .

Results from consistency experiments (Fig. 1) support
the aforementioned derivation. Images exhibiting the consis-
tency phenomenon are structurally similar yet differ in de-
tail, especially when the diffusion model generates structural
information at t → T .

To further confirm that the ϵ-predicted mechanism leads
to model triviality as t → T , we trained an x0-predicted
DM as a counterexample. We modified the loss function to:

Lx0 = Ex0∼q(x0)

[
||x0 − µθ(xt, t)||2

]
. (5)

We conclude that the ϵ-predicted mechanism is the root
cause of the consistency phenomenon as t → T .

Optimizing Sampling Probabilities of Timesteps in
Training
The presence of the consistency phenomenon suggests that
DMs tend to converge easily as timesteps approach T . Con-
sequently, we propose an innovative approach to enhance the
training efficiency of DMs. Notably, we observe that existing

Figure 6: Ablation study, every model is trained on Cifar10.
(a) illustrates the influence of different mean µ in our pro-
posed CLTS (Eq. 6). (b) reflects the influence of values of
different target iterations that we used in CLTS (Eq. 7).

diffusion frameworks treat all timesteps equally, employing
a uniform probability U(t) = 1/T for timestep sampling
during training. This results in redundant training for t → T .

To tackle this challenge, we embrace curriculum learn-
ing, a training acceleration technique grounded in the prin-
ciple of learning from easy to hard. Interestingly, DMs in-
herently generate data with varying levels of difficulty, with
the difficulty of ϵ-predicted DMs increasing as the timestep
decreases.

Our solution is the Curriculum Learning-based Timestep
Schedule (CLTS), designed to progressively decrease the
sampling probabilities of timesteps t → T as train-
ing progresses while increasing the probabilities of oth-
ers—essentially finding an optimal timestep distribution.
For simplicity, we assume that the optimal timestep distri-
bution follows a Gaussian distribution N(·), where the mean
µ signifies the most important timesteps, and others are less
critical:

N(t) =
1

σ
√
2π

exp

(
− (t− µ)2

2σ2

)
. (6)

To streamline CLTS and reduce hyper-parameter com-
plexity, we set the variance σ = T , establishing a standard
variance across timesteps. Our initial attempt involved shift-
ing the Gaussian distribution as the mean transitions from
T to 0, but this yielded minimal improvement. We hypoth-
esize that the generation of DMs requires the involvement
of all timesteps. Shifting the distribution led to overly small
sampling probabilities for all timesteps except t → T at the
initial stage. Therefore, we propose a mixed distribution, in-
troducing a factor γ to transition the distribution from uni-
form to Gaussian:

P (t) = (1− γ)U(t) + γN(t), γ =
current iteration
target iteration

, (7)

where the target iteration is a hyper-parameter that controls
the speed of the Gaussian distribution’s emergence.

It is important to note that our proposed CLTS shares a
similar implementation with (Hang et al. 2023) and (Choi
et al. 2022). However, there are substantial differences in our
underlying philosophies. Inspired by curriculum learning,
our approach is rooted in the principle of learning from easy



to hard, while (Hang et al. 2023) and (Choi et al. 2022) fo-
cus on finding an optimal distribution. Our method demon-
strates increased robustness and efficiency in extensive ex-
periments, as showcased in the next section.

BaselineOurs Reference

Figure 7: Comparisons of generated images. Both ours and
the baseline are trained on Guided Diffusion

Experiments
In this section, we train our optimized methods on cifar10
and ImageNet128 datasets, following the hyper-parameter
settings of Improved Diffusion and Guided Diffusion, re-
spectively. The details of the hyper-parameter settings are
as follows:

For Cifar10, we used a cosine timestep schedule, 4,000
timesteps, learning rate = 1e-4, and batch size = 128. We
used an exponential moving average (EMA) rate of 0.9999
for all experiments. We implemented our models in Py-
Torch, and trained them on 2 × NVIDIA 3090 GPUs, using
250 sampling processes. We used Adam optimizer, with β1

= 0.8, β2 = 0.999. which are based on the observation of the
smooth landscape of diffusion models (DMs). For CLTS, we
set the mean value µ = 1200 (0.3 × total timesteps, the op-
timized mean value through ablation study), and the target
iteration = 5× 104.

For ImageNet128, we used a linear timestep schedule,
1,000 timesteps, learning rate = 1e-4, and batch size = 256.
We also used an EMA rate of 0.9999 for all experiments. We
implemented our models in PyTorch, and trained them on 2
× NVIDIA A800 GPUs, using 250 sampling processes. We
used Adam optimizer, with initial β1 = 0.8, β2 = 0.999. The
hyper-parameters of our proposed methods are as follows:
For CLTS, we set the mean value µ = 300, and and the target
iteration = 3× 105.

Ablations
To evaluate the effectiveness of our proposed methods, we
performed an ablation study. The results indicate that each
module enhances the performance of the model, and the
combination of all modules achieves the best FID score.
Fig. 6 (a) examines the effect of different mean values µ
in our proposed CLTS (Eq. 6). The mean value µ controls
the most important timesteps in the Gaussian distribution.
The results suggest that the optimal value of µ is around 0.3,
which implies that the timesteps with the highest contribu-
tion to generation are not necessarily the most difficult ones
to learn. Fig. 6 (b) investigates the effect of different target
iterations in our proposed CLTS (Eq. 7). The target iteration
is a hyper-parameter that adjusts the speed of the Gaussian

Table 2: Comparing with state-of-the-art methods in Ima-
geNet128, we use FID to evaluate the performance. Our
method achieves the lowest FID score at each iteration.

Methods Iters=1M Iters=2M Iters=3M Iters=4M
GD 17.18 8.14 6.63 6.04

Min-SNR 13.53 6.49 6.11 5.81
GD+Ours 7.24 5.91 5.48 5.40

Table 3: Comparing with state-of-the-art methods in Ci-
far10, we use FID to evaluate the performance. Our method
achieves the lowest FID score at each iteration.

Methods Iters=100k Iters=200k Iters=300k Iters=400k Iters=500k
ID 5.40 3.48 3.05 2.72 2.60

FDM 4.91 3.03 2.58 2.49 2.43
ID+Ours 4.24 2.81 2.46 2.38 2.31

distribution emerging. The results demonstrate that the opti-
mal value of the target iteration is around 100k, which means
that the model needs about 100k iterations to fully adapt to
the Gaussian distribution.

Based on the optimal settings, we trained our optimized
models on Cifar10 and ImageNet 128, and compared them
with the baseline models. Fig. 5 illustrates the results. The
results reveal a significant acceleration of our optimized
models, e.g., on Cifar10, our model achieves a 2× speedup
compared with the baseline model, and on ImageNet128,
our model achieves a 2.6× acceleration. Fig. 7 shows the
visualization results of our methods. These results demon-
strate the effectiveness and robustness of our proposed meth-
ods.

Comparisons with state-of-the-art methods
We compare our optimized models with state-of-the-art
methods, Min-SNR and FDM (Wu et al. 2023). Table 2 com-
pares the performance of our method with two state-of-the-
art methods, Guided Diffusion (GD) and Min-SNR, on Ima-
geNet128, and Table 3 compares with Improved Diffusion
(ID) and FDM (Wu et al. 2023), on Cifar10. The results
demonstrate that our method achieves the lowest FID score
at each iteration of both datasets, indicating that our method
outperforms the existing methods in terms of image genera-
tion quality and speed.

Conclusion
In this paper, we have investigated the consistency phe-
nomenon of diffusion models (DMs). We have attributed this
phenomenon to two factors: the lower learning difficulty of
DMs at higher noise rates, and the smoothness of the loss
landscape of DMs. Based on this finding, we have proposed
the strategy to accelerate the training of DMs: a curricu-
lum learning based timestep schedule. We have evaluated
our proposed strategies on various models and datasets, and
demonstrated that they can significantly reduce the training
time and improve the quality of the generated images. Our
work not only reveals the stability of DMs, but also provides
practical guidance for training DMs more efficiently and ef-
fectively.
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